Assessment of age-related differences in functional capacity using the Virtual Reality Functional Capacity Assessment Tool (VRFCAT)

Alexandra S. Atkins, Ph.D.1, Ioan Stroescu, Ph.D.1, Nathan B. Spagnola, M.S.1, Stacy A. Ruse, B.S.1, Vicki G. Davis, Dr.PH.1, Richard S.E. Keefe, Ph.D.1,2
1NeuroCog Trials, Inc. (Durham, NC), 2Duke University (Durham, NC)

BACKGROUND
Reliable evaluation of cognitive performance and functional capacity is critical to the effective assessment of mental health in aging individuals. The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) was developed as a direct performance-based assessment of functional capacity that is sensitive to changes in function across multiple populations.

Using a realistic virtual reality environment, the VRFCAT assesses a subject’s ability to complete instrumental activities associated with a shopping trip, including searching the pantry at home, making a list, taking the correct bus, shopping in a store, paying for the purchases, and returning home. The VRFCAT includes multiple forms, to allow for repeated testing with minimal practice effects. In previous studies, the VRFCAT has demonstrated high test-retest reliability and has shown sensitivity to functional impairment (Ruse et al., 2014).

The primary aims of the present study were to (1) assess the sensitivity of the VRFCAT to functional declines associated with normal aging, (2) examine the relationship between VRFCAT performance and cognitive function in both young and older adults, and (3) to examine age differences in the relationship between functional and cognitive measures.

METHODS

SUBJECTS
- Participants included 44 healthy Young Adults (YA) ages 18-30 (24 male, 20 female), and 41 healthy Older Adults (OA) ages 55-70 (17 male, 24 female).
- Subjects were recruited from the University of California- San Diego, the University of Miami Miller School of Medicine, and the University of South Carolina.
- Participants provided detailed information regarding computer use and experience.
- 100% of YAs and 90% of OAs indicated a high level of familiarity and comfort with computers.

PROCEDURE
- Functional capacity was assessed with both the VRFCAT and the UPSA-2-VIM, which is a standard rater-administered performance-based measure of functional capacity utilizing physical props and materials.
- Randomized alternate forms of the VRFCAT were administered at Visit 1 and Visit 2.
- Cognitive performance was assessed using the MATRICS Consensus Cognitive Battery (MCCB), which assesses speed of processing, attention, working memory, verbal learning, visual learning, reasoning and problem solving, and social cognition.
- Key outcomes measures for the VRFCAT included (1) Total Time to complete all objectives, (2) Errors, and (3) Forced Progressions, which occur following repeated failure at a given task.
- Analyses examined age differences in performance as well as correlations between functional and cognitive outcomes.

RESULTS

- VRFCAT demonstrated strong age-related differences in performance on total completion time, total errors, and total forced progressions (p<.001 for all).
- UPSS total score was not sensitive to differences between age groups (p=1).
- UPSS total score was strongly correlated with VRFCAT Total Time in both groups (r=.72 for YA, r=.81 for OA, p<.0001 for both), suggesting the measures assess similar constructs.

RELATIONSHIP TO COGNITIVE FUNCTION
- VRFCAT demonstrated strong correlations with cognitive performance across both age groups.
- Negative correlation between verbal working memory (Letter Number Span) and both VRFCAT Total Time and VRFCAT Errors in both YAs and OAs (p<.001 for all).
- In OAs, declines in verbal learning (HVLT Total learning) and visual learning (BVMT total learning) were associated with an increase in the number of reminders required during the VRFCAT assessment (i.e. checking the bus schedule).

CONCLUSIONS
- Assessment of functional capacity in primary prevention and preclinical/prodromal AD trials requires measures with improved sensitivity to changes in non-demented individuals.
- Many studies rely on partner-reported measures that require the availability of a competent informant and lack sensitivity to subtle functional deficits in this population; performance based measures represent a viable alternative.
- The VRFCAT is a reliable performance-based measure with sensitivity to age-related differences in functional capacity.
- 90% of OAs indicated a high degree of familiarity and comfort with computers, indicating computerized testing is appropriate in this population.
- Findings provide preliminary support for the VRFCAT as a sensitive and reliable co-primary measure of functional capacity in primary prevention and prodromal AD trials.

ACKNOWLEDGEMENTS AND DISCLOSURES
- R.S. Keefe currently or in the past 3 years has received investigator-initiated research funding support from the Department of Veterans’ Affairs, Feinstein Institute for Medical Research, GlaucosHealth, National Institute of Mental Health, Novartis, Psychogenics, Research Foundation for Mental Hygiene, Inc., and the Singapore National Medical Research Council. He currently or in the past 3 years has received honoraria, served as a consultant, or an advisory board member for Abbvie, Alexia, Amgen, Astellas, Axilis, Akebia/Chemical, Biadetta, Biogenesis, Boehringer Ingelheim, Bristol-Myers Squibb, BiG Lilly, Eniva, Eisai, Lundbeck, Merck, Mitsubishi, Otsuka, Pfizer, Roche, Shire, Sunovion, Tekeda, Targespert. Dr. Keefe receives royalties from the BACS testing battery and the MATRICS Battery (BACS Symbol Coding). He is also a shareholder in NeuroCog Trials, Inc; A.S. Akhine, I Stroescu, NB Spagnola, SA Ruse, VG Davis, are employees of NeuroCog Trials, Inc.

Funding provided by the National Institute of Mental Health Grant Number: 1R43MH106240-01A2 and 2R44MH106240-02